Al-La-Ni (Aluminum-Lanthanum-Nickel)

V. Raghavan

Recently, [2001God] determined a liquidus surface for Alrich alloys of this system and a vertical section at 90 at.% Al.

Binary Systems

The Al-La phase diagram [Massalski2] depicts seven intermediate phases: αLa₃Al₁₁ (orthorhombic), βLa₃Al₁₁ (D1₃, Al-deficient Al₄Ba-type tetragonal), LaAl₃ (D0₁₉, Ni₃Sn-type hexagonal), LaAl_x (C32, AlB₂-type hexagonal), LaAl₂ (C15, MgCu₂-type cubic), LaAl (CeAl-type orthorhombic), and La₃Al (D0₁₉, Ni₃Sn-type hexagonal). The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ (D0₁₁, Fe₃C-type orthorhombic), Ni₂Al₃ (D5₁₃-type hexagonal), NiAl (CsCl-type cubic), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al (L1₂, AuCu₃-type cubic; also denoted γ'). The La-Ni phase diagram [Massalski2, 2002Oka] shows a number of intermediate phases: LaNi₅ (D2_d, CaCu₅-type hexagonal), La₂Ni₇ (Ce₂Ni₇-type hexagonal), LaNi₃ (PuNi₃-type rhombohedral), LaNi₂ (C15, $MgCu_2$ -type cubic), La_2Ni_3 (orthorhombic), LaNi (B_f CrBtype orthorhombic), La₇Ni₃ (D10₂, Fe₃Th₇-type hexagonal), and La₃Ni ($D0_{11}$, Fe₃C-type orthorhombic).

Ternary Phases

Three ternary compounds of this system are listed in the compilation by [1995Vil]. AlLaNi and Al_3LaNi_2 are orthorhombic. Al_5LaNi_2 has the Al_5Ni_2 Pr-type orthorhombic structure. Two other phases AlLaNi₄ and $Al_{25}La_{17}Ni_{58}$

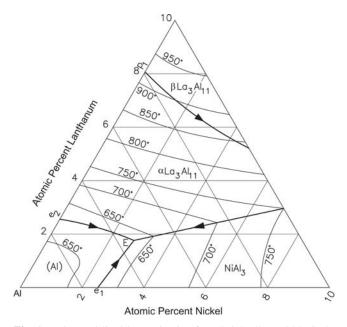


Fig. 1 Al-La-Ni liquidus projection for Al-rich alloys [2001God]

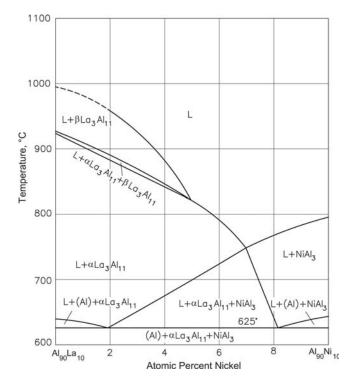


Fig. 2 Al-La-Ni vertical section at 90 at.% Al [2001God]

[1995Vil] lie on the extension of the binary phase LaNi₅ into the ternary region at constant La content.

Ternary Phase Equilibria

Starting with high-purity metals, [2001God] melted Alrich alloy compositions in an arc furnace under Ar atmosphere. The phase equilibria were studied using differential thermal analysis, x-ray diffraction, and optical and scanning electron metallography. The liquidus surface determined by [2001God] is redrawn in Fig. 1. The solidification of the Al-rich alloys is through the ternary eutectic reaction E: L \leftrightarrow (Al) + NiAl $_3$ + α La $_3$ Al $_{11}$ at 625 °C. A vertical section constructed by [2001God] along the Al $_{90}$ La $_{10}$ -Al $_{90}$ Ni $_{10}$ join is shown in Fig. 2.

References

1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), *J. Phase Equilibria*, 1993, **14**(2), p 257-259

1995Vil: P. Villars, A. Prince, and H. Okamoto, Al-La-Ni, *Handbook of Ternary Alloy Phase Diagrams*, Vol 4, ASM International, 1995, p 3836-3837

2001God: T. Godecke, W. Sun, R. Luck, and K. Lu, Metastable Al-Nd-Ni and Stable Al-La-Ni Phase Equilibria, *Z. Metallkd.*, 2001, **92**(7), p 717-722

2002Oka: H. Okamoto, La-Ni (Lanthanum-Nickel), *J. Phase Equilibria*, 2002, **23**(3), p 287-288